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An asymptotic theory of two-dimensional planetary solitary eddies is presented. 
Previous studies in one-and-a-half layer models have discovered special classes of 
radially symmetric structure which are associated with eddies of permanent form. 
We generalize these studies by including an active lower layer and by considering the 
effects of azimuthal structure. Accordingly, we stress two main results; namely, (i) 
permanent-form two-layer eddies with essentially arbitrary radial structure exist, 
provided that the eddy includes a weak imbedded dipolar asymmetry and an 
appropriate counter-rotating deep flow, and (ii) fluid trapped under an eddy in 
Taylor columns can significantly affect eddy properties if the trapped fluid possesses 
non-trivial potential vorticity. 

The structural permanency in our solutions arises from a balance between 
nonlinear steepening, driven by the continuity equation, and planetary dispersion. 
The structural asymmetries affect eddy propagation, either by dipole interaction 
within the layer (as occurs in modons) or by pressure forces acting between layers. 
The primary role of the deep counter-rotating flow is to balance the net upper-layer 
transport. The interesting layer-layer interaction, however, involves higher-order 
dynamics and is sensitive to the continuity of the potential-vorticity field. In  general, 
these eddies trap fluid both in the upper thermocline and in the lower layer. 

The dominance of oceanic anticyclones over cyclones is relatively well known. A 
main conclusion of this study is that the class of long-lived anticyclones is 
considerably broader than previously realized. This may help explain the observed 
bias toward anticyclonic eddies. A second conclusion is that estimates of material 
transport by eddies may need to account for the movement of fluid outside the main 
bowl of the eddies. 

1. Introduction 
Much attention has been paid in recent years to naturally occurring long-lived 

vortices. Examples range from the Great Red Spot of Jupiter (as well as other more 
recently discovered planetary spots) to several types of ocean eddies. Distinguishing 
features of these vortices include their apparent robustness to disturbances, their 
dominance of their surroundings in strength and amplitude and their monopole 
structure. Such vortices are commonly referred to as coherent vortices, and in this 
paper an asymptotic theory of long-lived vortices is presented. 

In the oceanographic setting, which constitutes the primary motivation for the 
present study, estimates suggest that the number of such long-lived vortices is 
overwhelming. For example, based on a recent census of anomalous water parcels, 
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Ebbesmeyer et al. (1986) argue that there may be from 1000 to 10000 such vortices 
present in the North Atlantic at any one time. This population density, coupled with 
the observation that such eddies possess and transport extreme property anomalies, 
suggests that coherent vortices participate importantly in the distribution of passive 
and dynamic tracers in the world’s oceans. This class of eddies has been named 
‘submesoscale coherent vortices ’ (SCVs) and are observed to be predominantly 
anticyclonic (McWilliams 1985). 

Another oceanographic example of long-lived vortices is those associated with 
western boundary currents (e.g. Gulf Stream rings, Kuroshio rings). These form a t  a 
rate of several per year and are observed to transport considerable mass across their 
parent current. Both stable cyclones and stable anticyclones (i.e. cold and warm core 
respectively) have been observed, although certain currents, like the Agulhas, mostly 
form anticyclones. 

Although the dynamic role of coherent vortices in the world ocean has not yet been 
unambiguously identified, the above observations have motivated several relevant 
theoretical studies. This interest is partly motivated by experience in other branches 
of fluid mechanics, such as the study of surface gravity waves. There, it is recognized 
that coherent features (i.e. ‘solitons’) frequently arise in the evolution of a given 
field. A similar role has not yet been demonstrated for coherent vortices in 
geophysical fluid dynamics (GFD) (but see McWilliams 1984), but it remains a 
possibility that the predictability of ocean currents could be enhanced by the 
apparent propensity of the ocean to generate long-lived structures. To this end, 
Charney & Flierl (1981) speculate on the importance of solitary-wave behaviour in 
the oceans a t  scales larger than the deformation radius. 

A unifying theme of analytical GFD vortex studies is their attention to permanent- 
form, steadily propagating structures, which are in turn simplifications motivated by 
observations. Perhaps the best known class of coherent vortices is the ‘modons’ 
(Stern 1975; see also the excellent review by Flierl 1987), which belong to the general 
category of dipoles. Such vortices have been studied in barotropic, reduced-gravity 
(Larichev & Reznik 1976), two-layer (Flierl et al. 1980) and continuously stratified 
(Berestov 1981) fluids. A distinguishing feature of modons is that their potential- 
vorticity function is non-analytic ; that is, their potential-vorticity structure within 
closed streamlines differs from that on streamlines connected to the far field. The 
laboratory study of Flierl, Stern & Whitehead (1983) argues for the participation of 
modons in the evolution of rather general eddy initial-value problems. Nonetheless, 
the application of modons to the understanding of oceanic vortices appears to be 
limited, as observed eddies are dominantly radially symmetric. No convincing 
evidence of dipole structure in either SCVs or rings has yet been found. 

It has been proposed by several authors that radially symmetric coherent vortices 
are described by a two-dimensional KdV equation. Flierl (1979) and Malanotte- 
Rizzoli (1982) discuss such solutions within the quasi-geostrophic framework. In  that 
parameter range, the requisite steepening of KdV dynamics is driven by external 
sources, such as a large-scale shear flow (as in Flierl) or topography (as in Malanotte- 
Rizzoli). Subsequent to these studies, it was noticed almost simultaneously by 
Mikhailova & Shapiro (1980), Petviashvili (1980), Charney & Flierl (1981), Yamagata 
(1982) and Petviashvili & Yan’kov (1982) that KdV dynamics describe weakly 
nonlinear, solitary eddies on a beta-plane (see also Flierl 1987). The steepening in 
these equations is driven by the nonlinear advection of buoyancy and is thus internal 
to the eddies (although, interestingly, the above authors derived equations similar to 
that discussed by Flierl 1979). The analysis applies to either barotropic or reduced- 
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gravity systems (i.e. lower layer a t  rest), and solutions for the radial structure were 
provided by Charney & Flierl (1981) and Petviashvili & Yan’kov (1982). Result of 
these studies is that solitary, shape-preserving solutions exist for anticyclones, but 
not for cyclones. 

Many coherent vortices have been observed to be thick relative to the environment 
in which they reside, i.e. the vertical scale of a given ring can be O(800 m) in a fluid 
of total depth O(4000 m). The ratio of these thicknesses (0.2) is thus comparable in 
magnitude to other small parameters describing ring dynamics. This recommends 
the study of rings in systems with active lower layers, as opposed to reduced-gravity 
systems. Two important first contributions along these lines were made by Flierl 
(1984 a, b )  who generalized an earlier reduced-gravity solution proposed by Nof 
(1981). Flier1 argued that drifting rings generally radiate planetary waves. These, in 
turn, slow the westward ring migration and induce a southward ring drift. Most 
recent progress on rings in multi-layer systems has been numerical and has employed 
a variety of equations. Examples are balanced model calculations (McWilliams, Gent 
& Norton 1986), ‘filtered ’ generalized geostrophic calculations (Tang & Cushman- 
Roisin 1992 ; Cushman-Roisin, Sutyrin & Tang 1992) and ‘unfiltered ’ primitive 
equation calculations (Chassignet & Cushman-Roisin 1991). Many of these studies 
have emphasized the role of wave radiation on eddy propagation, and the relative 
stability of anticyclones compared to cyclones (Matsuura & Yamagata 1982 ; Sutyrin 
& Yushina 1986). 

In spite of the considerable progress made on the study of coherent vortices, many 
interesting questions remain. For example, it is unclear how the radially symmetric 
solitary waves found in reduced-gravity systems respond to the presence of an active 
lower layer. Indeed, it is unknown if stationary-state vortex solutions in two-layer 
systems exist. Also, simple scaling arguments suggest that regions of trapped fluid 
will develop under oceanic eddies, in a manner reminiscent of Taylor columns 
trapped over bottom obstacles. A classical question in eddy dynamics pertains to the 
effects of such trapped fluid (which is constrained dynamically to move with the 
eddy). Finally, the classical permanent-form solutions obey a nonlinear dispersion 
relation, and possess a special, limited class of radial structures. These structures do 
not compare well with laboratory solitary eddy profiles (Sutyrin 1985) ; indeed, 
subsequent laboratory and numerical modelling (Sutyrin & Yushina 1988 ; Nezlin & 
Sutyrin 1989) have suggested the existence of a broader class of permanent-form 
eddies. Recently, Nycander & Sutyrin (1991) argued the surprising result that finite- 
amplitude reduced-gravity eddies of permanent form can assume effectively 
arbitrary radial profiles, provided that they also contain a weak imbedded dipole of 
the appropriate shape. The effects of an active lower layer on such solutions or the 
necessity of a finite amplitude to offset the effects of meridional dispersion, however, 
have not been previously considered. 

The above questions form the main motivations for the present work. We examine 
the dynamics of radially symmetric eddies in two-layer models and suggest two basic 
results. (i) We argue that the class of permanent-form eddies may be generalized to 
include two active layers and that finite eddy amplitudes at scales larger than the 
deformation radius are not necessary to avoid meridional dispersion. Permanent- 
form eddies with arbitrary radial profiles and weak imbedded dipoles are found. The 
balance maintaining the eddy, namely steepening versus dispersion, remains of 
fundamental importance, with the dipole locally affecting eddy structure and 
propagation. The primary response of the lower layer is to develop a counter-rotating 
flow, consistent with a vanishing barotropic transport. (ii) A second result concerns 
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the effects of flows in the lower layer on eddy dynamics. These occur both in response 
to the upper-layer eddy, and as a result of the internal dynamics of the lower layer. 
Such flows influence eddy structure and propagation provided the lower layer has a 
non-trivial dynamical identity. The latter term ( i  .e. ‘ non-trivial identity ’) is defined 
in terms of a non-analytic potential-vorticity function in the lower layer. These, in 
turn, imply that fluid trapped in the lower layer possesses unique potential vorticity 
relative to the (passive) far-field potential vorticity. This potential-vorticity anomaly 
affects the eddy propagation rate due to the beta forces acting on the lower layer 

Our solutions suggest that the ability of rings and vortices to  trap and transport 
fluid outside the main bowl of the eddy may be greater than previously imagined. 
Finally, we speculate that  the existence of such permanent-form anticyclones may be 
related to the observed dominance of anticyclones, a t  least in the observations of 
SCVs, in the world’s oceans. 

Our model is introduced in $2 and our choices for scales are discussed. Various 
timescales of dynamic relevance are also identified. A perturbation expansion 
exploiting the differences in the various scales is carried out in $3. The role of 
asymmetries and of multi-valued potential-vorticity functionals is explored in $4 
and the paper ends with a discussion. 

now. 

2. Model development 
Consider a two-layer, flat-bottom, inviscid, hydrostatic, Boussinesq ocean (see 

figure 1). The undisturbed upper layer is of thickness H ,  and the undisturbed lower 
layer is of thickness H - H , .  The density defect between the two layers is measured 
by the reduced-gravity parameter, g’, and the beta-plane approximation is used. The 
quantities u and v denote upper and lower layer velocity, respectively. The quantities 
x and y denote east and north positions and t denotes time. The free surface is 
denoted 7 and h measures the deviation of the interface from its far-field depth. 
Under these conditions, the dimensional momentum and continuity equations 
describing the system are 

Ut + U-VU -k ( fo +pdY) k x U = -gv7, 

U t  -k V-VV -I- ( fo +pd y) k x V = -gV7 + g’Vh, 

- h, + V * ( v ( H -  H ,  - h ) )  = 0 ,  

( la)  

h,+V- (u(H,+h) )  = 0 ,  ( I b )  

( 1 4  
(14 

where the Coriolis parameter has been written fo + pd y, the dimensional meridional 
gradient off is pd, and a subscript x, y or t denotes a derivative. The symbol V denotes 
the usual gradient operator and k is a vertical unit vector. (Note that the effects of 
the free surface 7 have been neglected in the continuity equations; see below.) 

2.1. Scales 
We are considering the evolution of depressions and elevations of the thermocline 
interface at z = - H ,  - h ; thus, we bring to the non-dimensionalization of (1) 
measures of the lengthscale, L,  and the amplitude, ah, of the thermocline disturbance. 
Other externally set system parameters are the far-field upper-layer thickness and 
total fluid depth, H I  and H ,  and the quantities g ,  g’, fo and pd. These may be 
combined to yield two important intrinsic lengthscales, the beta scale, L, = f0/B and 
the deformation radius, R, = (g’H,)t/fo. Using typical parameters, these lengthscales 
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FIGURE 1.  Model schematic. The upper layer has an undisturbed depth H ,  and the interface occurs 
at z = - H I - h .  The free surface is denoted by 7 and the total fluid depth is H .  The beta plane 
approximation is used. The Coriolis parameter f is written as f = f0+Pd y, where 8, is the 
north-south gradient off. 

are L, = 3000 km and R ,  = 30 km. A scale estimate for the free surface 7 is given by 
the hydrostatic balance to be 

7 - (9’/9)6h. ( 2 4  
We are motivated in our choice of scales by the oceanic situation where, for 

example, Gulf Stream rings are described by lengthscales of o(70-100 km) ( %R,) and 
timescales are long compared to f;’. Thus, we expect velocities to be dominantly 
geostrophic in nature, and hence the upper-layer velocities to scale according to 

An additional factor representing the ratio of the layer thicknesses is introduced for 
the lower-layer velocity scale : 

v - o@). 

This reflects that the eddy is principally baroclinic and that (for the most part) the 
lower layer is simply responding to the upper-layer eddy. 

Eddy propagation is driven by /3, hence time will be scaled by L/(/3,R;), which 
represents the time taken for a non-dispersive planetary wave to propagate one 
characteristic lengthscale. In spite of its linear origins, the relevance of this timescale 
to nonlinear eddies was first demonstrated by Nof (1981), and argued for the 
nonlinear problem more recently by Cushman-Roisin, Chassignet & Tang (1990). 
(More thorough scale analyses of the two-layer equations, with application to eddies, 
have recently been conducted by Chassignet & Cushman-Roisin (1991) and Cushman- 
Roisin et al. (1992). The interested reader is referred to those studies for additional 
justification of the present space and time scales, as well as a broader exploration of 
possible interesting scalings.) 

With these scales, the non-dimensional forms of (1)  are 

bxu, +Soi(u. V u )  + (1 +by) k x u = - v?/J, 

ah, + d ( V -  ~ h )  - (1 - $) ( V .  V )  = 0, 

(3a) 
bh,+V.u+&V.(uh) = 0,  (3b) 

~ ~ S u , + ~ S ~ ( v . V u ) + ~ ( l + ~ y ) k x  u = -V(q -h) ,  ( 3 4  
( 3 4  

which identifies the relevant non-dimensional parameters 

b = L/L,, Oi = 6h/Hl, s” = H J H ,  S = R;/L2.  
21-2 
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There are obviously many different parameter regimes for study in this model. The 
particular part of parameter space we have chosen focuses on S as the dominant 
small parameter, and is described by 

1 S S -  Oi $. s”-P $. $ 4 3 .  

Clearly, we are examining a very special sector of parameter space; however, before 
moving on to the solution of this system we will argue that this sector is of interest 
geophysically and that it offers some useful analytical advantages. 

Crudely speaking, the above ordering describes reasonably large-amplitude eddies, 
which are weakly affected by the lower layer and p, Typical values for L,  g’, H ,  and 
H as obtained from ring data, are 70 km, 2.5 cm/s2, 500 m and 5000 m, respectively, 
which leads to 

S - 0.3, 6 = 0.1, $ - 0.02. 

These values are in rough agreement with the above ordering. Some further algebra 
demonstrates that the model applies to thermocline variations of O( 150 m). This 
value is characteristic of deeper isopycnals in rings, if a little small. 

As mentioned earlier, our interests are also partly motivated by SCV observations. 
Although it is true that SCVs are generally smaller than the first baroclinic 
deformation radius (which is an integral measure of the stratification) their 
lengthscales do tend to be larger than the deformation radius associated with their 
density defect. This results in small local Burgers numbers for SCVs (McWilliams 
1985) and is in agreement with our above assumption about the relative size of S. Of 
course, other aspects of our model are at  odds with SCV structures. Most notably, we 
examine a surface eddy and two-layer stratification. SCVs are more properly 
described as subsurface interthermocline lenses, the modelling of which involves at 
least three layers. Also, lenses generally require 6h and the lens thickness scale to be 
comparable ; here, we examine relatively small thermocline displacements. None- 
theless, the present part of parameter space is amenable to analytical analysis, and 
we will speculate on the relevance of the present results to SCVs in the hope that the 
dynamics involved will transcend the limits necessary for their strict asymptotic 
validity. 

The above parameter ordering also describes the relevant physics. For example, 
steepening driven by density advection on a beta plane is proportional to pd vh, while 
dispersive relative vorticity generation is proportional to (V x u ) ~ .  The scaling rule 
Oi - S equates their importance, which may be seen upon non-dimensionalizing the 
above quantities. Hence, this parameter range can be expected to yield KdV-like 
dynamics, and thus long-lived structures. 

We now consider the 6 scaling. A major difference between two-layer and reduced- 
gravity systems is that the former may exhibit baroclinic instability. This tendency 
is, of course, lengthscale dependent and it has been argued by Phillips (1954) that the 
division between baroclinically stable and unstable disturbances occurs at the length- 
scale L - [g’(H, H, ) i / f$ ,  which should be recognized as the geometric mean of the 
Rossby deformation radii appropriate to each layer. The above scaling for s” 
describes lengthscales of precisely this order, suggesting that the analysis resides 
on the boundary of baroclinically stable eddies. 

A separate feature of our analysis is the dynamic presence of the lower layer as an 
effect on eddy propagation. Lower-layer dynamics are expressed by potential- 
vorticity conservation, and it will be argued later that the lowest-ord$r nop-constant 
form of lower-layer potential vorticity is (non-dimensionally) qo = &ah +by. Second- 
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layer potential vorticity is thus set by eddy topography 5nd 6. For the lower layer 
to act like anything more than a wave guide requires OiS - p, which describes the 
above /3 scaling. 

The above scaling also defines our lengthscale L in terms of the intrinsic 
lengthscales of the system, L, and R,, as 

Thus L is smaller than the so-called intermediate scale L, = (RiL,)i (Charney & Flier1 
1981 ; Yamagata 1982), but larger than the deformation radius. It will be therefore 
possible to simultaneously retain geostrophy at lowest order, but avoid the 
latitudinal dispersion effects associated with pd. 

It is also worth explicitly mentioning the timescales relevant to this problem. The 
first is the previously mentioned baroclinic propagation timescale, which when 
evaluated is 

L = (R: L,)+. (4) 

= S-"f;' x 30 days. 
L R: L, t = - -  

- P d R W  
It will also be of dynamical interest to consider the evolution on timescales long 
compared to the baroclinic timescale. This will be done by means of a multiple scale 
analysis, where the long timescale, 7 ,  is given by 

L 
= 8-1 - x tT4f 0' x 4 months. 

pd 'i 
Gulf Stream warm core rings are observed to drift in the Slope Water for times of 
O(6 months), while cold core rings appear to survive in the Sargosso Sea for even 
longer periods of time. Thus, introducing the above long 7 timescale becomes of 
considerable interest. It will also turn out that the effects of steepening will be felt 
on this scale. 

We also mention for later use the very rapid barotropic timescale, Tbt = (pd L)-l x 
7 days. This is the timescale for the barotropic adjustment of our two-layer 
system, and can be expected to be of importance in general initial-value problems. 
The analysis to follow can be performed with the explicit inclusion of motions on this 
timescale ; however, we have here suppressed its appearance for simplicity. We 
nonetheless mention at  appropriate points in the text the influence of rapid 
barotropic motions on the solution. There are, of course, other longer timescales 
which could potentially apply to the problem of ring evolution and which pertain to 
physics aside from that described here (e.g. latitudinal dispersion). We have here 
chosen to focus only on the two indicated timescales, and to neglect any slower 
evolution. (In a similar vein, we have also demonstrated to our own satisfaction 
that including a free surface does not alter the present results, provided the ratio 
9/19 4 S3. This constraint is easily met for typical oceanic reduced-gravity values, 
and we proceed using a rigid lid for the sake of simplicity.) 

3. Expansion in 8 
A standard way of studying problems which involve evolution on more than one 

timescale is the method of multiple scales (Bender & Orszag 1978). A multi-scale 
analysis proceeds by considering all dependent variables as functions of both the fast 
and slow times, i.e. p = p(t, 7 )  and replacing time derivatives according to 

a a  a 
at at a7 
-+--+s-. 
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The quantities t and T are now considered as independent variables, and all 
dependent variables are expanded in powers of S. For convenience, the other non- 
dimensional parameters are written as 

oi = #a, s”= 826, , i = ~ 3 ~ ,  

where a, S and P are all O(1) constants. 

geostrophic and non-divergent, e.g. 
The first two orders in the expansion reveal that the upper-layer flow is simply 

k x u ,  = -Vv,,  V - U ,  = 0, (5% b )  

where the subscript 0 denotes the order of the variable in the S expansion. Similar 
equations apply to the O ( 8 )  velocities, i.e. u,, and the lower layer is found to be 
compensated (e.g. 7, = h,) through the first two orders. At this point, we also assert 
our interest in radially symmetric eddies by searching for solutions where p o  = qo(r) 
( r  denotes the radial coordinate in a cylindrical system attached to the eddy). 

At O(S ,), the upper-layer momentum equations yield 

a(u , .Vu , )+kxu ,  = -Vv2 ( 6 4  

from which it can be shown that 
v - u ,  = 0 

for a radially symmetric 7,. The lower-layer momentum equations are simply 
geostrophic and non-divergent a t  this and the next two orders (i.e. from O(S2) to 
O(S4)). Evolution on the baroclinic timescale, t ,  appears in the third order of the 
expansion. The upper-layer equations at  O(S ,) yields 

( 7 4  

(7 b )  

where compensation at O(S)  has been explicitly recognized. The divergence of the 
O(S3)  velocities can be calculated from (7a) and used in ( 7 b ) .  Substituting where 
appropriate with other lower-order results eventually yields 

C ~ ( U , . V U ,  + u,.VU,) + k x U, +&k x U, = - VT,,  

Ph,, + v .  u, +a(u,. Vh, + I(,’ Vh,)  = 0, 

PTot-aJ(Tol V2T,)-aJ(q1, V2T0)-PTOx+~J(v2--2,r ,)  = 0, (8) 

where V2 denotes the usual Laplacian operator, while the lower-layer continuity 
equation can be written as 

Prot+aJ(T,-h,, To)  = V-U,.  (9) 
J in (8) and (9) denotes the usual Jacobian operator: 

J(A,B)  = A,B,-A,B,. 

The calculation of the right-hand side of (9) requires expansion of the lower-layer 
momentum equations to O(S5),  which yields 

(10) 6k x U,+Spyk x U, = -V(v5 -h5) .  

The above are used in (9) and we search for solutions propagating at the constant 
rate c. Under these conditions, the solution to  (9) can be written 

where K is an as yet unspecified function. We also mention that the retention of the 
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barotropic timescale, Tbt, here results in a linear, dispersive barotropic wave equation 
for lower-layer pressure 7, - h,. The solution in (1  1 )  represents the asymptotic limit 
(at large Tbt) of the general time-dependent solution. 

Equation ( 1  1 )  is a somewhat surprising result and its content is worth examining. 
Recall that the second-layer lowest-order velocity is simply geostrophic and related 
to the O(S2) pressure. Thus the left-hand side of (11) is recognized as a formula for 
the lower-layer ‘streak function ’, i.e. the stream function appropriate to a frame 
attached to the propagating eddy. Recall that particles move along contours of 
constant streak function. It is also the case that two-layer models of the sort studied 
here are subject to potential-vorticity conservation in both layers, where the exact 
dimensional definition of, say, lower-level potential vorticity is 

V x v + f  

hz . 9 2  = 

Non-dimensionalizing and expanding (12) reveals that the lowest-order non-constant 
contribution to q, is qz0 = aSqo+py, demonstrating that potential vorticity in the 
lower layer is governed by eddy topography and p. Equation (11) is therefore 
immediately recognized as the expression of potential-vorticity conservation in the 
lower layer. 

There are thus two separate cases of interest ; namely (i) the case with no closed qz0 
contours and (ii) the case where some gzo contours are closed. In both cases, the form 
of K on qz0 contours extending to infinity is straightforward to determine, and is 

K ( 2 )  = (c/a)Z. (13) 

Of course, inside a closed q20 contour, (13) is not required, and some other function 
may apply. Although the study of such non-analytic potential vorticity fields is 
interesting, we will not pursue them at this order. Rather, we will proceed assuming 
that (13) holds everywhere, including inside closed qzo. (The case of closed qz0 
contours and non-analytic potential vorticity will be of rather more interest on the 
longer timescale.) In this case, (11) may be evaluated and used in (8) to yield 

- pcc+ 1) 70s = a(J(70, V2%) + J(%, V”0)) (14) 

which applies everywhere in the domain. Multiplying (14) by x and area integrating 
over the entire plane yields, after several partial integrations, 

an equation identical to one first found by Flierl (1984b) in an appendix on quasi- 
geostrophic eddies. 

We are interested in monopoles, and will enforce that interest by requiring the area 
integral of qo to be non-zero. (Note, this constraint also underscores a fundamental 
difference between the present analysis and the ‘modon plus rider’ solutions 
discussed by Flierl et al. (1980). There, the symmetric rider met a ‘no net angular 
momentum ’ constraint. That would only be possible here if the q0 integral vanished.) 
Hence (15) requires c = - 1, the interpretation of which is that at the lowest order the 
eddy structure drifts west at  the long non-dispersive planetary phase-speed limit. 
This result is consistent with our scaling (in particular with (4)), which focuses on 
lengthscales larger than the deformation radius. (The above result for c also holds if 
K is non-analytic. A discussion is given in the Appendix.) 
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Clearly then, the only non-trivial solutions for rl must satisfy the homogeneous 
form of (14). Three obvious solutions are rl = p(r) for any function q, ql = rorcose 
and rl = qor sin 8. The first can be simply absorbcd into qo, and the others represent 
O(S) displacements of ro in the zonal and meridional directions, respectively. A 
suitable choice of eddy centre eliminates the latter two. In  view of the above, and 
given the almost passive nature of rl, we will assume ql = 0 for the remainder of this 
analysis. 

Equation (11) also yields 
92-h2 = - h o  (16) 

everywhere. This demonstrates that the lower layer rotates in the opposite sense to  
the upper layer, and in such a manner that the lowest-order barotropic transport 
vanishes, i.e. u, + u, = 0. (Recall that  k x u, = - V(rz - h2) . )  The relative thicknesses 
of the two layers, with the lower-layer thicker, allows the weak deep flow to offset the 
upper-layer transport. We also mention that (16) automatically satisfies the no-net- 
angular-momentum theorem of Flier1 et al. (1983) at this order. 

The first appearance of the long T timescale comes a t  O(S4) of the expansion. The 
upper-layer equations at  this order are 

Puot + ~ ( U ~ . V U ,  + u,*VU,) + k x u4 = - Vq4, 

Pro, + v'u, + a(v' 7 0 )  + v' (uO h 3 ) )  = 0,  

( 1 7 4  

(17b)  

where the fact that ql vanishes has been used. The divergence of the fourth-order 
velocity field can be calculated from (17a). Substituting the result in ( 1 7 b ) ,  along 
with the expressions for u3 from earlier results yields 

/ & 0 Z - d ( q 3 - h 3 ,  ~ O ) + a P q O T O Z + p V 2 ~ O Z  = -a(J(r,,V2r0)+J(r07V2r,))' (18) 
The fact that yo = qo(r) ,  and the restriction to stationary-state solutions, so that 
qo7 = -pqoZ, have been used to deduce (18). Clearly, additional information about 
lower-layer pressure, q3 - h3, is necessary to close the problem. 

Lower-layer continuity a t  O(S4) leads to 

-,-@r0z+aJ(r3-h3r 90) = '"4 (19) 

and examination of (3) demonstrates that the right-hand side can be evaluated from 
the O(Ss) lower-layer momentum equations. The final form of (19) is then 

which, after some algebra, can be written as 

It is somewhat tedious, but relatively straightforward, to  demonstrate that (20  b )  is 
again related to  q2 conservation. It expresses, in effect, the relation between the next- 
order corrections to  the lower-layer streak function, represented by r3-  h3 + (,@/a) y, 
and the weak tendency to develop relative vorticity necessary to  simultaneously 
conserve qz and obtain a steadily propagating eddy. It should also be noted that the 
quantity ,u represents an O(S) correction to the main eddy propagation rate, c = - 1. 

The solution to ( 2 0 b )  is clearly 
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where, by the usual far-field arguments, a formula analogous to (13 )  applies to any 
qzo contour connected to the far field. (It is also true here that retention of the 
barotropic timescale converts (20 b )  to a linear, dispersive wave equation, the 
solution of which tends asymptotically to (21 ) . )  The quantity v3--h3 now being 
determined in general by (21 ) ,  (18) becomes 

The right-hand side of (22 )  simplifies considerably because of the symmetry in "lo, and 
is proportional to (denoting the azimuthal coordinate of the eddy-centred radial 
system as 8 ) :  

Equation ( 2 3 )  can be viewed as defining a third-order, linear, non-constant coefficient 
operator acting on "lZ,  and as such, the operator L has the adjoint 

We have found three solutions to the homogeneous form of ( 2 4 ) ,  namely 

w ( l )  = q(r) for any function q, dZ)  = r2 sin 8, d3) = r2 cos 8. (25 )  

Of these, d3) can be used to place a constraint of considerable importance on eddy 
structure. (The other two add no constraints due to the symmetry of "lo.) Equation 
(22 )  becomes upon multiplication by v(') 

(26b)  
where Fl = rcos8~orV2~z-rcos~r]2(V2~O)r+sin~l; lor--cos8-~z.  " lze Tor 

r r 

Integrating ( 2 6 a )  azimuthally from 0 to 27c thus yields 

where 
1 "  vZs = v Z  sine do. 

The quantity qzs obviously represents the radial structure of a dipole which is 
imbedded within the otherwise symmetric eddy. It is interesting that the qZs 
structure may be obtained directly from ( 2 7 a ) ,  namely 

The above is similar to (40) in Nycander & Sutyrin (1991) and, for a purely analytic 
potential-vorticity function a, can be obtained from that result in the limit of small 
disturbances. Equation (27c )  leads naturally t o  a main conclusion of this paper; 
namely, that essentially arbitrary radial profiles qo(r) can be associated with 
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permanent-form eddies. It is, of course, required that such an eddy contain an 
asymmetry (in particular, a dipole) of the structure defined by (27c).  However, since 
the dipole is weak ( O ( S 2 ) ) ,  i t  is likely that its presence would be undetected in 
oceanographic observations, and perhaps unnoticed in the laboratory. Such 
considerations are of concern when considering theory-laboratory comparisons like 
those discussed in Sutyrin (1985) and Nezlin & Sutyrin (1989). It also follows from 
(27 a)  that the lowest-order eddy structure is subject to the constraint 

1: [ /37cr2(aqo qor + (V2y0),) + ,8r2yor a G' cos2 8 d8 dr = 0. 1: 1 (28)  

Examples of solutions to (27a )  are the subject of the next section. First, however, 
we point out that  (28)  is the expression of the no-net-angular-momentum theorem to 
this order. To see this, note that (27a )  may be written 

a 
0 2 z c?r 

P z rM+ q3 - h3) r dB = - a h  - {ryor qZs,.- rqorr qZ8}. 

An integration over r then yields 

after one integration by parts. The integrand in (30) is seen to be the O(S)  
contribution to the barotropic mass transport stream function, thus validating the 
above conjecture. 

4. Almost radially symmetric eddy structure 
The structure functions, G(q20) (see ( 2 1 ) ) ,  fall into either the analytic or non- 

analytic category. We have studied both choices and examples appropriate to each 
will be discussed here. The simplest case is that  of analytic G ,  in which the form of 
G is determined by the far field (see e.g. (13)), and assumed to hold everywhere (even 
within closed q20 contours, should they occur). Thus, in general, 

and this can be used in (27c) to yield a formula for qZs.  In  principle, one can evaluate 
(27 c )  numerically for a given yo( r )  (subject to some weak far-field constraints on qo(r) ,  
see below) following a procedure like that used in Nycander & Sutyrin (1991). For the 
purpose here of illustrating the connection between given q2* and qo profiles as simply 
as possible, however, we have chosen to construct the coupled (qzs,q0)  pair in a 
different fashion. I n  effect, we will take the qZs structure as given and calculate the 
associated yo(r) .  Such a procedure is simpler to manage numerically and yields a 
more immediate physical understanding of the dipolemonopole interaction. (This 
procedure is also essentially equivalent to evaluating (27 c ) . )  Therefore, for a given yZs 
(27 a )  becomes 

which for a given dipole, vZs, is a non-constant-coefficient, nonlinear equation for lo. 
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The boundary conditions on (32)  are that the eddy be isolated, i.e. qo and all its 
derivatives vanish for large r ,  and a t  r = 0 it  is required that qo be finite and that 
qor = 0. These conditions make (32)  an eigenvalue problem for the parameter p, while 
the nonlinearity of (32)  will connect y and the amplitude of qo. It is also noted that 
at large r ,  (32)  asymptotes to 

where it has been implicitly assumed that q0 and qZs both decay in the far field. 
Decaying solutions thus require p < 0, demonstrating that this class of eddy meets 
the isolation constraint by exceeding the far-field planetary wave speed limit. The 
only possible far-field response is therefore evanescent. A second result from (33)  is 
that 

where KO denotes the decaying modified Bessel function of order zero. (Note that this 
far-field structure meets the requirements necessary to obtain (33) .  Also, qZs is seen 
to decay adequately in the far field (upon the substitution of (34)  in (27c) )  in order 
for (33)  to apply.) It is also possible to analyse (32)  in the limit of r+O. We require 
qZs = 0 at r = 0, but only that q287 be finite (see (27b)) .  The result is 

770 = K,(lpI r )  for r+ a, (34)  

qo - r2 as r+O. (35)  

Finally, evaluating (28)  for this G eventually yields 

a formula related to one first noticed by Nof (1981) in the context of lens-like eddies 
and to one valid in a more general context by Cushman-Roisin (1986). Here the 
previously mentioned requirement of westward propagation also demonstrates the 
important result that only anticyclonic solitary eddies exist, i.e. $ $ q o d A  > 0. 

4.1.  Solutions 

Equation (32)  represents a generalization of the classical class of planetary solitary 
waves. To see this, note that the special case of qZs = 0 reduces (32)  to 

which is the equation studied previously by Flierl (1979) in the context of quasi- 
geostrophic eddies interacting with shear, and by Mikhailova & Shapiro (1980), 
Petviashvili (1980), Charney & Flierl (1981) and Petviashvili & Yan’kov (1982) for 
(effectively) the case of weakly nonlinear eddies at  scales larger than the deformation 
radius. 

For non-zero r ] 2 8 ,  the structure equation (32)  is generally more complicated, but 
still represents a tractable numerical problem. We have solved (32)  for the special 
case : 

qZs = a o ( r ) ( r - 2 ) 3 ,  r < 2,  ( 3 8 4  

T 2 s  = 0, r 2 . 2 ,  (38 b )  
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for various values of a,. The parameter p was set to - I ,  and the asymptotic solution 
in (34) was used to generate a one-parameter family of estimates for q,, qor and qOrr 
at r = 10. The remaining parameters, a, S and p, were all given values of 1. Equation 
(32) was then integrated to r = O ,  and the quantity qor was checked. The one 
available parameter at r = 10 was then adjusted until qor(0) vanished. 

Solutions of (32) for various values of a, are shown in figure 2 (a). Recalling (27 b ) ,  
it is seen that positive values for a, correspond to dipoles with low pressure to the 
north. Solutions for a, = -0.1, 0.1 and 1 are shown. Also shown for comparison is 
the classical solution of Flier1 and Petviashvili & Yan’kov, which here corresponds 
to the choice a, = 0. Figure 2 ( b )  contains the profiles of azimuthal velocity qor for 
each of the examples in figure 2(a) .  

The main tendency in these solutions is that negative a, values result in lower- 
amplitude eddies, and positive a, values result in higher-amplitude eddies. These 
results may be understood in terms of a simple interaction of the imbedded dipole 
and the radial eddy. A solitary dipole with a low pressure north of a high will develop 
an eastward propagation effect due to nonlinear centre-centre interaction. In  
contrast, a dipole consisting of a high pressure north of a low (i.e. negative a,) 
develops a westward propagation tendency due to the same mechanism. (Such 
interactions are a t  the heart of modon propagation.) Equation (36) demonstrates 
that ,LA is ultimately a result of the global eddy structure ; however, locally, the eddy 
can be modified considerably by the dipole. It is clear from (36) that larger 
amplitudes are associated with greater westward drifts. This mechanism is ultimately 
the source of the nonlinear steepening in our model. For negative a,, the amplitude 
of the eddy near the eddy centre is relatively low (compared to a, = 0). The westward 
drift rate of this amplitude by itself is too slow to maintain the permanency in form. 
The necessary additional push comes from the advective effect of the dipole. These 
arguments are modified in the obvious way for a, positive. 

4.2. Anomalous potential vorticity 
We now explore the consequences on eddy structure and propagation of 
discontinuities in lower-layer potential vorticity. A first constraint on q2 structure is 
that a G function of the form in (31) is required on any streaklines connected to the 
far field. The opportunity to introduce any other structure requires closed qzo 
contours. Assuming that this occurs, there are still at least two other constraints that 
the lower-layer qz should be required to meet; namely, continuity of lower-layer 
pressure and velocity on the bounding streakline. These constraints on the 
potential-vorticity functional inside closed qzo, can be expressed as 

where qzoc denotes the critical bounding qzo contour. 

We will here proceed with the specific choice 
Although (39) restricts the class of available functions, many still are acceptable. 

Also, for the purposes of this discussion, we will simplify (27a) by assuming qzs = 0. 
For radially symmetric q,, the closed qzo streaklines are generally as depicted in 



Almost symmetric solitary eddies in a two-layer ocean 647 

I 
I I 

0 5 10 
r 

I 
1 I 

0 5 10 
r 

FIQURE 2. (a) Radial eddy amplitude and ( b )  azimuthal velocity against radial location r for several 
dipoles of differing strength. The values of a,, measuring the strength of the imbedded dipole, are 
indicated and the eddy drift, p,  is always -1 .  Negative a, induces lower amplitudes in to. 
Structural permanency is maintained by dipole-monopole interaction. 
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FIQURE 3. yzo schematic. Contours of constant yz0 = acY~/~+Py are displaced north relative to the 
radially symmetric eddy. The critical bounding contour yZoe is shown, as are the radii rI and rl. The 
angle, O,, defining the boundary between interior and exterior potential vorticity for a given r is 
also indicated. 

figure 3. The form of qz0 requires east-west symmetry and, for an anticyclone, a lone 
stagnation point displaced to the north appears. The necessity of this structure can 
be demonstrated from the definition of q,,. Clearly, if closed qzo occurs, a local 
extremum in the structure of qzo exists on the bounding contour. Thus 

(41) 

wherej is a unit vector in the north direction, which is a condition that can be met 
only on the north side of an anticyclone. Recalling (16), (41) is seen to describe the 
point where the lower-layer flow speed exactly matches the eddy drift rate. 

It is also frequently the case that the eddy centre, defined by Vy, = 0, lies within 
the closed zone. Thus, our attention is drawn naturally to two critical radii, r1 and 
r,,  where rl denotes smallest radial distance from the eddy centre to the bounding 
streakline, and r2 denotes the distance from the eddy centre to the stagnation point 
(see figure 3). With (31) and (40), the structure function (27a) becomes 

vq,, = OlGVy, + pj = 0, 

1 1 
~ o r r r + ~ ~ o T ~ - ~ ~ o T + I U ~ o r + ~ r o ~ o r  = 0 for r > ~ 2 9  (42a) 

- qzOc a, + 2a0 qzOc 8, +a, qzOc sin (28,) + "yo qor = 0 for rl < r < r ,  (42 b )  ) 
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Thus it is seen that the non-analytic functional complicates the nonlinearity of the 
structure function considerably, and this can be expected to affect the eddy 
propagation rate. Indeed, evaluating (28) yields 

which demonstrates that the deviation of the qzo structure from (31) inside qz0 
affects p. 

Although useful, (43) does not clearly display the mechanics determining the eddy 
drift rate. These are more clearly seen if the 0(B3) upper-layer continuity equation 
(17b) is studied. Upon use of (7) to eliminate u,, (17b)  reduces to 

(44) -cLp?lOZ+v 'U4+aJ(1;13-h3? r O ) - a P q O  VOZ = O' 

Multiplying the above by x and area integrating yields 

(The vanishing of jsy u,-idA (where i is a zonal vector), necessary to obtain (45) 
can be directly demo&trated from (17).) Equation (45) has the straightforward 
interpretation that, in general, the forces which must balance in a steadily 
propagating eddy are the (i) bulk Coriolis force due to the net eddy migration, (ii) 
pressure forces acting on the upper-layer eddy caused by lower-layer flows and (iii) 
the so-called beta force. Such a formula was also noticed by Flier1 (1984b) where the 
pressure force was due to  wave radiation rather than anomalous potential vorticity. 
He also found an induced southward motion caused by wave drag, which is absent 
here due to our search for permanent-form solutions. As such, (45) resembles (43). 
The exact equivalence of these equations can be demonstrated if (20a) is now 
multiplied by x and area integrated. The result is 

which relates net forces in the lower layer in a manner like that for (45). Clearly from 
(21) 

JJYmr3-"..4 = (47) 

Substitution in (46) and recalling (31) demonstrates the conjecture. 
It is interesting to note that if the lower-layer q2 field is analytic, so that (31) 

applies everywhere, the pressure force contribution to (43) identically vanishes, and 
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FIGURE 4. Plots of (a) amplitude and ( b )  azimuthal velocity versus radius for eddies with non- 
analytic lower-layer q. The values for a, are - 1 and 1 ,  and the curves are compared to the classical 
case given by a, = 0. 
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FIQURE 5. (a) Lowest-order potential vorticity and ( b )  lower-layer pressure, y3-h3,  for an 
isolated eddy with non-analytic q. a, = 8. 

(36) results. The potential-vorticity functional in (31) is one which, in some sense, 
describes a passive lower-layer fluid. All deep motion is ultimately related to the 
eddy as a response to dispersion and drift. Equation (43) demonstrates that if this 
passive condition is not met, i.e. if the deep fluid has any non-trivial dynamic 
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identity (expressed by a unique potential vorticity), the propagation (and structure) 
of the eddy will be affected. Arguments can be made that ring generation events 
potentially involve a broad spectrum of lower-layer structures, from perfectly 
compensated initial conditions, to  states with important deep flows. Perhaps (45) is 
related more to a general rule of eddy propagation rather than an exception. 

We have solved (42) for several values of a,; the results for qo for a, = 1 and - 1 
are shown in figure 4(a).  The results for yor with the same a, values are shown in 
figure 4(b) and the classical results for a, = 0 are shown in both plots for comparison. 
For all solutions, the value of p was set to - 1, the values for a, 6 and ,8 were all set 
to I ,  and (34) (still valid for large r )  was used to generate a one-parameter family of 
solutions for yo, yor and yorr a t  r = 10. Integration towards the origin was then begun 
according to (42a). When critical condition (41) was met, the governing equation was 
switched to (426) and the critical value of qzOc was noted. Finally, the structure 
function was switched to (42c) when 8, reached the value -in. This procedure was 
repeated, and the single available parameter a t  r = 10 adjusted until vor(0) vanished. 
Also, figure 5 (a) shows a plot of a6y, +by = qzo, which contains closed pz0 contours, 
and in figure 5 ( b )  a plot of y3-h3.  For these plots, a, = 8. 

To this point, we have only considered the dipolar corrections to  the upper-layer 
structure. As the previous analysis shows, this part of the O(S2) field is connected 
dynamically to the lowest-order structure. On the other hand, a non-analytic 
potential-vorticity structure requires the presence of higher azimuthal modes at 
O(S2). This can be seen from (22), where i t  is noticed that the equation for the radial 
structure function of higher modes is inhomogeneous for non-analytic G .  We have 
not explicitly calculated v2, but can mention that analyses of the higher-order mode 
equations show vanishing solutions near r = 0 and decaying solutions for large r .  
Higher-order azimuthal corrections thus appear to be well behaved. 

5. Discussion 
The purpose of this study has been to examine long-lived eddies in stratified fluids 

of finite depth. Thus this work complements the existing theories of stationary eddies 
in reduced-gravity models, as well as Flierl’s (1984a, 6) seminal works on eddy 
radiation by drifting lenses. In  particular, the present class of eddies is characterized 
by lengthscales of O(70 km), which corresponds to S < 1 .  Also, they reside on 
isopycnals which interact importantly with the lower layer ; a typical dimensional 
value of far-field interface depth is roughly O(500 m) and the total fluid depth is 
5000m. These scales are all in reasonable agreement with observations of many 
warm eddies. Further, the present eddies differ dynamically from other eddy 
solutions involving dipoles (e.g. Flier1 et al. 1980) in that the fundamental eddy 
structure is radially symmetric. 

Accordingly, we have demonstrated that permanent-form, anticyclonic eddies can 
exist in stratified fluids with active lower layers and clarified the structure of the 
lower-layer flow in their vicinity. The basic response of the lower layer is to rotate 
cyclonically such that the net mass transport over both layers vanishes. This is 
essentially a result of Sverdrup dynamics, which come into play because of the 
lengthscale of the eddy. The lower-layer motion is forced by the eddy as it drifts a t  
the non-dispersive planetary limit. Modifications to this drift are forced by the 
nonlinearity in the continuity equation. Deeper parts of an anticyclone move 
relatively fast and tend to overtake shallower parts. This steepening influence is 
balanced against the weak tendency for dispersion a t  these lengthscales. No motion 
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is excited in the far field as the perturbation to the drift speed is to the west ; in effect, 
the eddies move too fast to generate waves in the (linear) exterior. 

We have also found that effectively arbitrary radial structure can be associated 
with permanent-form two-layer eddies, provided that an appropriate, weak 
asymmetry exists within the eddy. The constraint on the otherwise arbitrary radial 
structure is that it decay according to a KO Bessel function rule. The asymmetries 
take the form of imbedded dipoles and these dipoles influence the eddy structure and 
propagation in a fairly simple fashion. For example, a dipole consisting of a high 
pressure over a low augments the westward drift of the eddies, sending lower- 
amplitude parts of an eddy to the west faster than would otherwise occur. 

Further, the theory of permanent-form radial eddies can be extended to include a 
discontinuous potential-vorticity function in the lower layer. The effect of such flows 
on the upper-layer eddy structure and propagation are somewhat more complicated 
than for the case of imbedded dipoles; however, the relevant force balance is fairly 
straightforward. Anomalous lower-layer potential vorticity induces an asymmetric 
pressure distribution on the upper-layer eddy. The force balance of the Taylor 
column system thus involves this pressure force in addition to the usual beta and 
drift forces. 

Both effects, i.e. upper-layer dipoles and lower-layer anomalous potential vorticity, 
can be simultaneously present in an eddy, demonstrating that the tendency for 
eddies to behave as long-lived structures is indeed profound. The generalization of 
this category of stationary solutions to include such diverse types of eddy structures 
and dynamics is perhaps the most surprising result of our analysis. 

A natural question concerns how the present study applies to the real ocean. To 
this end, the above-mentioned result is a useful dynamical statement, given the 
apparent dominance of monopoles in the ocean. This analysis may provide a partial 
explanation for the observed bias of SCVs towards oceanic anticyclones. (It is also 
tempting to think that the present dynamics participate in Gulf Stream warm-ring 
evolution. On the other hand, it is observed that cold rings are also relatively long 
lived, and the present model clearly cannot be said to apply to them.) Further, the 
fact that arbitrary profiles can be associated with permanent-form eddies is 
important when comparing oceanic or laboratory eddies to theory. Finally, we 
conclude that eddy propagation rates and structure can be affected importantly by 
fluid dynamically trapped under the eddy, provided the trapped fluid has some non- 
trivial dynamic identity. Considering for a moment the circumstances resulting in 
the formation of warm rings, it is plausible that the potential-vorticity structure of 
a new ring spans the range of possibilities from fully compensated lower-layer flows 
to strong lower-layer flows of nearly arbitrary structure. Our latter result argues for 
the necessity of considering deep flows when predicting ring behaviour. 

As a related implication, we have demonstrated that the circumstances in which 
deep fluid is dynamically trapped by the eddy are easily met. Estimates of eddy mass 
transport have previously focused on the fluid within the eddy baroclinic signature. 
Our analysis suggests such estimates might be in need of revision. 

The significant question of the stability of our proposed solutions has not been 
addressed, but is of interest. Numerical experimentation (Swenson 1987) suggests 
that the modon plus rider solutions of Flier1 et al. (1989) are unstable, a result which 
Swenson argues draws attention to non-quasi-geostrophic effects in nonliear eddies. 
It has further been argued that the trajectory of westward-propagating dipdles is 
unstable, owing to an intensification of one of the two pressure centres induced by 
trajectory perturbations (Makino, Kamimura & Taniuti 1981). With respect to the 
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former issue, the non-quasi-geostrophic effect of finite-amplitude thickness per- 
turbations is central to our solutions. This fact, coupled with the weak nature of the 
imbedded dipole, complicates comparisons with Swenson’s experiments. Further 
numerical experiments will provide the most direct route to addressing the 
fundamental stability of the present solutions. With regard to the latter issue, we 
note that the imbedded dipole present in our solutions need not obtain the classic 
dipole structure of high pressure north of low pressure. Thus, the unstable feedback 
between trajectory perturbations and the evolution of pressure centres need not 
occur. Hence, we speculate that our solutions may be less susceptible t o  trajectory 
instability than westward-propagating modons. 

From a structural point of view, perhaps the aspect of our theory most likely to 
be field tested is the prediction of deep cyclonic flow underneath eddies. 
Observationally, little data are available to either refute or support this idea. On the 
other hand, some relevant observations were obtained during the study of warm core 
ring 82-B. Joyce & McDougall (1991) reported acoustic current measurements 
combined with standard hydrographic measurements to give maps of absolute 
azimuthal velocity for 82-B in April and June 1982. Both data sets indicate cyclonic 
flow underneath the eddy; the June velocities were observed to be in excess of 
10 cm/s. To be fair, however, the statistical significance of the April cyclonic flow is 
questionable, and Joyce & McDougall (1991) state that the dynamic connection of 
the June deep cyclonic flow to 82-B cannot be clearly demonstrated. We nonetheless 
mention these data, as they are at least consistent with our analysis. 

Numerical eddy models perhaps currently provide a more substantive test bed for 
our calculations, and to this end, the eddy studies of Chassignet & Cushman-Roisin 
(1991) support our finding of a counter-rotating deep flow under evolving eddies. It 
is also by now fairly well established numerically that anticyclones are considerably 
more stable than cyclones. Again, these tendencies are in agreement with our results. 

Finally, we remark again on the effect of trapped deep fluid on eddy propagation. 
The existence of closed qz0 contours occurs quite naturally for the scales which 
describe rings, i.e. the quantity aSyo +py generally develops isolated regions. The 
sensitivity of the eddy drift rate in (45) to the potential vorticity of the deep fluid 
suggests that the classical eddy propagation rate formulae, when applied to oceanic 
eddies, may be missing an important effect. 
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Appendix 
The purpose of this appendix is to demonstrate that the result of (15) that c = - 1 

holds even if K is non-analytic. To see this, note that the structure of the right-hand 
side of (14) is identical to that of (22). Therefore, d3) of (25) can be used to modify 
(14) in a manner analogous to that which leads to (27a). The result is 
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where (13) has been used 

q18 = Jr ql sin 8 d8, 

and it has been assumed that all dynamic quantities vanish as r -+ 00. Note that (13) 
applies for r outside any closed q20, so (A 1) is completely general for large r. The 
presence of (q0r)2 in the denominator of (A l),  however, is sufficient to ensure that 

-- a 'ls-+co as r + w ,  
ar Vor 

unless c = - 1. The above is disallowed as the perturbation scheme requires v1 < 
O(vo)  for all r .  Thus, the result c = - 1 is seen to depend only on the far field. 
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